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Regime of wave-packet self-action in a medium with normal dispersion of the group velocity
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Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
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Peculiar features of the self-action of non-one-dimensional wave packets described by the nonlinear Schro
dinger equation with a hyperbolic spatial operator were studied analytically and numerically. It was shown that
the self-action dynamics is determined by the consequence of the processes of transverse self-focusing fila-
mentation and longitudinal splitting. Splitting scenarios were classified. It is shown that the strongest inhomo-
geneities are excited along “hyperbolas” in the self-similar collapse process.

PACS numbes): 42.65.Tg, 42.65.Jx, 42.25.Bs, 42.65.Re

The nonlinear Shidinger equatiofNLSE) with a hyper-  modulation scales correspond to the relationgBip There-

bolic spatial operatofl] fore, such an instability should be realized also either for
modulation of a plane wave or even in the case of transverse

au du ) self-focusing of the localized distribution and should cause

IE_'—ALU_ E+|U| u=0 D splitting of the wave packet in the transverse and longitudi-

nal directions.
describes a wide class of nonlinear wave processes. In the L&t Us consider a new regime of self-action, which reflects
two-dimensional casétransverse-coordinate Laplacian, ~ Peculiarities of the hyperbolic spatial operator, Ef). By
= 9%/ 9x?), it determines the self-action dynamics of a W:’:lvesele.CtIrlg initial dlstr|b_ut.|(.)ns of the wave field speC|aII_y, we
on a liquid surfacd1—3] and the spatial evolution of wave will illustrate the possibility of the excitation of strong inho-

packets in a magnetized plasma in the range of parametefa09eneities during the splitting process, Efj. Evidently,
e regime is characterized by a strong spectrum broadening.

that corresponds to a saddle surface of the refractive indekx/h Vi h bl icall idered th
[4—6]. However, recently of the greatest interest have beeri! 'e"' SOVING t g probiem nutmericatly, we considere the
lane (A, — d7/9x*) version of the initial equatioil). This

the studies of the ultrashort laser pulses self-action in th o .
media with normal dispersion of the group velocity "€lP€d; unlike in earlier papef—9,11 to observe the long-

Vgl dw<0 (in this caset corresponds to the coordinate of ™M evolution of the system. Analytical results have a wider
the wave packet centroidy means of Eq(1) [7—12). The applicability range, since, are relatively easily generalized
most attention was given to the fact that according to(EQ. for the three-dimensional case.

the nonlinearity leads to the distortion of phase fronts, which In. the considered case OT the.hype.rbo_lic t_wo-dimensional
§@atlal operator the self-similar field distribution takes place,

direction and defocusing in the longitudinal one. The com-Which depends of=x"—z". The equation that describes

petition of these two processes can lead, in particular, to th'€ evolution can be written in the form
stabilization of the transverse collapse of the axially symmet-

. o 2
ric wave beam existing in the case @%z=0 [7]. The pos- ou Jgu - du o

sibility of arising of singularities during the evolution of the It 4l a2 +4&§ +|u[fu=0. 4
localized distribution is still the problem for discussion

[7.10,13. At >0 the introduction of the new variable;= \/Z trans-

We consider another feature of the wave self-action in th
framework of Eq.(1), which manifests itself just at the stage
of modulation instability of the plane wave. The growth rate
of such an instability is determined by the expresgib)3] U 14 au

i—+——n——+]|ul?u=0. (5
Y=k —KkD[2A5— (K —K2)], 2) gt mdndn

forms Eq.(4) to the equation, which is well known within
the self-focusing theory

whereA, is the amplitude of the plane wave akd andk,  Under the corresponding conditions it describes the collapse
are the longitudinal and transverse perturbation wave numn the “focusing” sector,le— z={>0. However, unlike
bers. The value of reaches its maximum not on a sphere, asthe corresponding process in NLSE, the collapse direction is

in the NLSE case, but on a hyperbolic surface not toward the system axix€ 0,z=0), but to some hyper-
bola,x2— 7%= {,>0. It is evident that for the initial symmet-
k? —k?=A2, (3) ric distribution there are two such hyperbolas and, hence,

simultaneously with the collapse one can expect that the
i.e., in the framework of Eq(1) instability is possible for wave field will be stratified in the transverse direction, as in
any, however small, scales of £1/k), so that the charac- the case of the self-focusing instability in conventional
teristic longitudinal {;~1/k,) and transversel( ~1/k,) NLSE.
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=0.12, (b) t*=0.25.
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the distribution becomes one-dimensional near the fne
10 —— 10 — =/, and the role of the defocusing terd(d?u/du?) is
s ZO oo e 2 e growing noticeable.
The most visible this effect is for the initial distributions
FIG. 1. Level lines of the wave fielfi(x,z,t=t*)|2. with weak “hyperbolicity”
In the sectoix?—2z?=¢{<0 the similar transformationy _ U (=29 X2 o
= /= ¢ reduces Eq(4) to Eq.(5) with the inverse sign of the u= a ex 234 24|’

nonlinearity (u|?2— —|u|?), which describes the wave field
self-defocusing. The different behavior of the solutions in thea; 5—p it is a wave field with its structure close to the

sectorg/>0 and{<0 is characteristic for the equations with jistribution described by the product of the super-Gaussian

the wave(hyperbolig operator. o functions (~exf — (x*+z*/2a*)]). The level lines of the
One should specially note a peculiarity of E®) that  i,itiq| distribution (6) are presented in Fig.(d).
determines the evolution of self-similar distributions. In the Figures 1-3 show the results of the computation of the

spatially two-dimensional case under consideration the initia’nitial distribution Eq. (7) evolution with uy=25a=3p
equat_lon, Eq.(1), describes the “unldlm(_ansmnal” self- =3.5. The following characteristic stages are observed.
focusing process weakened by a defocusing one. Contrarirg; rather slow and without noticeable changes in the
wise, Eq.(5) has the form of the “two-dimensional” NLSE, - ayimum amplitude value the process of field transverse
which proves that a “strong” self-focusingollapse is pos-  genaration in two distributiori&igs. Xa), 1(b)] is developed.
sible in the system under consideration. To analyze the dexg 5 resylt of this preliminary stage, the field becomes local-
creasing of a collapse due to the defocusing it is useful to 98,44 i the focusing sectdFig. 1(b)]. Then the field sharply
over to the orthogonal coordinate systefr=x*—z%u  pocomes stronger and localizes near the hyperbdlas?
—XZ. Thl_JS' for these YaT‘?‘b'eS we have the following equa-_ + 3 Thjs process is accompanied by splitting of the field
tion, equivalent to the initial one Eq1): distribution near hyperbolas=+3 in the defocusing direc-
tion [Fig. 1(c)]. Finally, rather strong field bunchd€ig.
au 22U du 22U 92 , 2(a)] are formed.
IE+4 ga—gz +a—§+2,u T —gﬁ +|ul?u=0. In further evolution of the system one should note the
K K ©6) process of some smoothing of longitudinal inhomogeneities
and subsequent stratification in the transverse direction. As a
result, the field becomes localized near two hyperbolas. The
Hence one can see that for the initial distribution with a weaksplitting instability evolution along these hyperbolas leads to
dependence op, the derivatives ovep in the Eqg.(6) can  formation of the field distribution shown in Fig(d). This
be omitted, so we come to E(b) describing collapse. How- consequence of processes repeats several fisess Figs.
ever, as the numerical calculations show, while collapsingdl(e),1(f)] the number of “hyperbolas’{six) corresponds to




PRE 61 REGIME OF WAVE-PACKET SELF-ACTION IN A . .. 893

@ teo12 (b) =012 The initial spectrum of the wave field=0 is limited by
[RL the region of the central spot in Fig(é8. During the evolu-
tion the level lines of the spectrum look rather exdgag. 3

due to nonlinear phase modulation of the field.tAt0.22 a
spectrum excitation corresponding to the maximum of the
instability increment of the plane wave of E@®) is distinc-
tively visible [Fig. 3(d)].

One should note one more peculiarity caused by the strati-
fication of the field distribution in the focusing direction. The
formation of a field minimum on the axisee Fig. 1 due to
this process leads to the formation of a concave phase front,
which, evidently, retards the expanding of a wave field in the
longitudinal direction. Thus, in spite of a common expanding
tendency determined, for example, by the integral relation-
ships[6—8], a defocusing process of the wave field along the
z-axis turns to be noticeably stabled. Due to this fact one
succeeds in keeping up the mean value of the field on the
higher level in the central region where the instability devel-
0 5 0 5 10 0 5 0 5 10 ops.

Decreasing ofiy in Eq. (7) leads to reducing of the num-

FIG. 3. Level lines of spatial spectrum of the wave field D€r of hyperbolas in which vicinity the field is localized and
IFu(ky .k, t=t*)|% at up=<3 “hyperbolicity” of the initial distribution ceases

manifesting itself. The evolution of such a distributiom (
the development of filamentation instabilifgee Eq.(2) at ~ <3) proceeds as in Reff6].
k,=0] and the near-axis region is filled with sharp suffi- Perturbations of a wave field localized near the character-
ciently regular bunchefsee Figs. (f),2(b)]. istics of a hyperbolic operator of the original equation Hg.

The picture of the numerical result level lines at the out-can be excited for initial distributions without “hyperbolic-
put moments is changed as a pattern in a kaleidoscope. Thi,” but in this case the process becomes slower. For ex-
computations accuracy was controlled by the accuracy oimple, in the case of a Gauss-shaped initial distribution, the
integrals of Eq.(1): longitudinal splitting is developed, first which results in the

formation of two rather strong field maximums moving in
the opposite directions along tlzeaxis. As for the param-
B 2 42 o 1o L) eters corresponding to the considered distribution(Egthe
"f ul dr,H—f Voul*=fuzl*= S [ul|dr. movement of the intensive localized field regions causes the
excitation of shockwaves. The secondary splitting is devel-
oped along the front of these shockwaves so as near the

The study of further splitting evolution was stopped whenhyperbolagsee Fig. 1
the accuracy was reduced. 26850 spatial Fourier harmon- We have considered a scenario for the dynamics of exci-
ics of a spectral method were used to obtain the results. Thiation of wave fields in the system described by the nonlinear
calculating algorithm was realized on the Workstation withSchralinger equation Eq(1) with the hyperbolic spatial op-
high capacity. erator. Three stages are characteristic for them: self-focusing

A peculiar feature of the dynamics of the self-action pro-filamentation, compression, and splitting of the filaments in-
cess under consideration is the anomalous broadening of th®mogeneities in the defocusing direction.
wave packet spectrum at the propagation. This effect can be The process of the wave field splitting in the longitudinal
interpreted as follows. In the process of self-focusing stratidirection is accompanied by a strong spectrum broadening.
fication the pattern becomes quasiunidimensidsak Fig. The evolution of a wave field of the considered fofsee
1). In the framework of one-dimensional NLSE the action of Fig. 2) must be visible on a liquid surface.
the focusing nonlinearity leads to the downshift of the fre- It is readily seen that analytical results are easily general-
quency of the distribution localized in the transverse direcized for the three-dimensional case. In this case the self-
tion (“soliton” ), which is determined by the field amplitude. similar variable ist=r?—z2. This gives grounds to be sure
As a result of the splitting instability developmdisee Fig. that the results obtained will not change in the 3D geometry.
2(a)] the amplitude of the “soliton” becomes a periodic By that, one can expect that, especially in the self-similar
function along a hyperbola corresponding to the field maxi+tegime of collapse to "hyperboloids,” the rate of splitting
mum. This yields the phase modulation of the fieldxiz ~ instability evolution will be noticeably higher and the gen-
coordinates and, hence, leads to a strong broadening of tlegation of such sharp inhomogeneities makes it necessary to
spatial spectrum. The numerical calculations corraboratego beyond the framework of the “quadratic dispersion” ap-
that the development of the splitting instability is accompa-proximation. The account of higher derivatives oveevi-
nied by a sharp broadening of the spatial spectrum. In adddently, playing the stabilizing role, requires additional study
tion, the spatial spectrum of the field amplitude is noticeably(see, for example, Ref14]). Thus, a hyperbolic character of
more narrow than the field spectrum, what is to the credit othe spatial operator in the nonlinear Satirger equation
the given interpretation. leads to the noticeable variety of the specific regimes of
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wave field self-action. In this paper we referred mainly to  The authors are grateful to A.A. Balakin for his assistance
nonlinear optics of short laser pulses but the same picture has the preparation of this work. The work was supported by
to occur in other fields described by E@), especially for the Russian Foundation for Fundamental Investigations

the wave packets on the liquid surfa&. (Grant Nos. 98-02-17205, 99-02-16399
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