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Regime of wave-packet self-action in a medium with normal dispersion of the group velocity

A. G. Litvak, V. A. Mironov, and E. M. Sher
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia

~Received 9 July 1999!

Peculiar features of the self-action of non-one-dimensional wave packets described by the nonlinear Schro¨-
dinger equation with a hyperbolic spatial operator were studied analytically and numerically. It was shown that
the self-action dynamics is determined by the consequence of the processes of transverse self-focusing fila-
mentation and longitudinal splitting. Splitting scenarios were classified. It is shown that the strongest inhomo-
geneities are excited along ‘‘hyperbolas’’ in the self-similar collapse process.

PACS number~s!: 42.65.Tg, 42.65.Jx, 42.25.Bs, 42.65.Re
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The nonlinear Shro¨dinger equation~NLSE! with a hyper-
bolic spatial operator@1#

i
]u

]t
1D'u2

]2u

]z2
1uuu2u50 ~1!

describes a wide class of nonlinear wave processes. In
two-dimensional case~transverse-coordinate LaplacianD'

5]2/]x2), it determines the self-action dynamics of a wa
on a liquid surface@1–3# and the spatial evolution of wav
packets in a magnetized plasma in the range of parame
that corresponds to a saddle surface of the refractive in
@4–6#. However, recently of the greatest interest have b
the studies of the ultrashort laser pulses self-action in
media with normal dispersion of the group veloci
]vgr /]v,0 ~in this caset corresponds to the coordinate
the wave packet centroid! by means of Eq.~1! @7–12#. The
most attention was given to the fact that according to Eq.~1!
the nonlinearity leads to the distortion of phase fronts, wh
causes, at the same time, wave focusing in the transv
direction and defocusing in the longitudinal one. The co
petition of these two processes can lead, in particular, to
stabilization of the transverse collapse of the axially symm
ric wave beam existing in the case of]/]z50 @7#. The pos-
sibility of arising of singularities during the evolution of th
localized distribution is still the problem for discussio
@7,10,13#.

We consider another feature of the wave self-action in
framework of Eq.~1!, which manifests itself just at the stag
of modulation instability of the plane wave. The growth ra
of such an instability is determined by the expression@4,5#

g25~k'
2 2kz

2!@2A0
22~k'

2 2kz
2!#, ~2!

whereA0 is the amplitude of the plane wave andk' andkz
are the longitudinal and transverse perturbation wave n
bers. The value ofg reaches its maximum not on a sphere,
in the NLSE case, but on a hyperbolic surface

k'
2 2kz

25A0
2 , ~3!

i.e., in the framework of Eq.~1! instability is possible for
any, however small, scales of (L.1/k), so that the charac
teristic longitudinal (L i;1/kz) and transverse (L';1/k')
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modulation scales correspond to the relationship~3!. There-
fore, such an instability should be realized also either
modulation of a plane wave or even in the case of transve
self-focusing of the localized distribution and should cau
splitting of the wave packet in the transverse and longitu
nal directions.

Let us consider a new regime of self-action, which refle
peculiarities of the hyperbolic spatial operator, Eq.~1!. By
selecting initial distributions of the wave field specially, w
will illustrate the possibility of the excitation of strong inho
mogeneities during the splitting process, Eq.~1!. Evidently,
the regime is characterized by a strong spectrum broaden
When solving the problem numerically, we considered
plane (D'→]2/]x2) version of the initial equation~1!. This
helped, unlike in earlier papers@6–9,11# to observe the long-
term evolution of the system. Analytical results have a wid
applicability range, since, are relatively easily generaliz
for the three-dimensional case.

In the considered case of the hyperbolic two-dimensio
spatial operator the self-similar field distribution takes pla
which depends onz5x22z2. The equation that describe
the evolution can be written in the form

i
]u

]t
14z

]2u

]z2
14

]u

]z
1uuu2u50. ~4!

At z.0 the introduction of the new variable,h5Az trans-
forms Eq.~4! to the equation, which is well known within
the self-focusing theory
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]u

]h
1uuu2u50. ~5!

Under the corresponding conditions it describes the colla
in the ‘‘focusing’’ sector,x22z25z.0. However, unlike
the corresponding process in NLSE, the collapse directio
not toward the system axis (x50,z50), but to some hyper-
bola,x22z25z0.0. It is evident that for the initial symmet
ric distribution there are two such hyperbolas and, hen
simultaneously with the collapse one can expect that
wave field will be stratified in the transverse direction, as
the case of the self-focusing instability in convention
NLSE.
891 ©2000 The American Physical Society
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In the sectorx22z25z,0 the similar transformation,h
5A2z reduces Eq.~4! to Eq.~5! with the inverse sign of the
nonlinearity (uuu2→2uuu2), which describes the wave fiel
self-defocusing. The different behavior of the solutions in
sectorsz.0 andz,0 is characteristic for the equations wi
the wave~hyperbolic! operator.

One should specially note a peculiarity of Eq.~5! that
determines the evolution of self-similar distributions. In t
spatially two-dimensional case under consideration the in
equation, Eq.~1!, describes the ‘‘unidimensional’’ self
focusing process weakened by a defocusing one. Cont
wise, Eq.~5! has the form of the ‘‘two-dimensional’’ NLSE
which proves that a ‘‘strong’’ self-focusing~collapse! is pos-
sible in the system under consideration. To analyze the
creasing of a collapse due to the defocusing it is useful to
over to the orthogonal coordinate systemz5x22z2;m
5xz. Thus, for these variables we have the following eq
tion, equivalent to the initial one Eq.~1!:

i
]u

]t
14S z

]2u

]z2 1
]u

]z
12m

]2u

]z ]m
2z

]2u

]m2D1uuu2u50.

~6!

Hence one can see that for the initial distribution with a we
dependence onm, the derivatives overm in the Eq.~6! can
be omitted, so we come to Eq.~5! describing collapse. How
ever, as the numerical calculations show, while collaps

FIG. 1. Level lines of the wave fielduu(x,z,t5t* )u2.
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the distribution becomes one-dimensional near the linez
5z0 and the role of the defocusing termz(]2u/]m2) is
growing noticeable.

The most visible this effect is for the initial distribution
with weak ‘‘hyperbolicity’’

u5
u0

a
expH 2

~x22z2!2

2a4
2

x2z2

2b4 J . ~7!

At a.b it is a wave field with its structure close to th
distribution described by the product of the super-Gauss
functions „;exp@2(x41z4/2a4)#…. The level lines of the
initial distribution ~6! are presented in Fig. 1~a!.

Figures 1–3 show the results of the computation of
initial distribution Eq. ~7! evolution with u0525,a53,b
53.5. The following characteristic stages are observ
First, rather slow and without noticeable changes in
maximum amplitude value the process of field transve
separation in two distributions@Figs. 1~a!, 1~b!# is developed.
As a result of this preliminary stage, the field becomes loc
ized in the focusing sector@Fig. 1~b!#. Then the field sharply
becomes stronger and localizes near the hyperbolasx22z2

.63. This process is accompanied by splitting of the fie
distribution near hyperbolasz.63 in the defocusing direc-
tion @Fig. 1~c!#. Finally, rather strong field bunches@Fig.
2~a!# are formed.

In further evolution of the system one should note t
process of some smoothing of longitudinal inhomogenei
and subsequent stratification in the transverse direction. A
result, the field becomes localized near two hyperbolas.
splitting instability evolution along these hyperbolas leads
formation of the field distribution shown in Fig. 1~d!. This
consequence of processes repeats several times@see Figs.
1~e!,1~f!# the number of ‘‘hyperbolas’’~six! corresponds to

FIG. 2. Structure of the wave fielduu(x,z,t5t* )u2. ~a! t*
50.12, ~b! t* 50.25.
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the development of filamentation instability@see Eq.~2! at
kz50# and the near-axis region is filled with sharp suf
ciently regular bunches@see Figs. 1~f!,2~b!#.

The picture of the numerical result level lines at the o
put moments is changed as a pattern in a kaleidoscope.
computations accuracy was controlled by the accuracy
integrals of Eq.~1!:

I 5E uuu2 drW;H5E S u¹'uu22uuz
2u22

1

2
uuu4DdrW.

The study of further splitting evolution was stopped wh
the accuracy was reduced. 7503750 spatial Fourier harmon
ics of a spectral method were used to obtain the results.
calculating algorithm was realized on the Workstation w
high capacity.

A peculiar feature of the dynamics of the self-action p
cess under consideration is the anomalous broadening o
wave packet spectrum at the propagation. This effect ca
interpreted as follows. In the process of self-focusing str
fication the pattern becomes quasiunidimensional~see Fig.
1!. In the framework of one-dimensional NLSE the action
the focusing nonlinearity leads to the downshift of the f
quency of the distribution localized in the transverse dir
tion ~‘‘soliton’’ !, which is determined by the field amplitud
As a result of the splitting instability development@see Fig.
2~a!# the amplitude of the ‘‘soliton’’ becomes a period
function along a hyperbola corresponding to the field ma
mum. This yields the phase modulation of the field inx,z
coordinates and, hence, leads to a strong broadening o
spatial spectrum. The numerical calculations corrabor
that the development of the splitting instability is accomp
nied by a sharp broadening of the spatial spectrum. In a
tion, the spatial spectrum of the field amplitude is noticea
more narrow than the field spectrum, what is to the credi
the given interpretation.

FIG. 3. Level lines of spatial spectrum of the wave fie
uFu(kx ,kz ,t5t* )u2.
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The initial spectrum of the wave fieldt50 is limited by
the region of the central spot in Fig. 3~a!. During the evolu-
tion the level lines of the spectrum look rather exotic~Fig. 3!
due to nonlinear phase modulation of the field. Att.0.22 a
spectrum excitation corresponding to the maximum of
instability increment of the plane wave of Eq.~3! is distinc-
tively visible @Fig. 3~d!#.

One should note one more peculiarity caused by the st
fication of the field distribution in the focusing direction. Th
formation of a field minimum on the axis~see Fig. 1! due to
this process leads to the formation of a concave phase fr
which, evidently, retards the expanding of a wave field in
longitudinal direction. Thus, in spite of a common expandi
tendency determined, for example, by the integral relati
ships@6–8#, a defocusing process of the wave field along t
z-axis turns to be noticeably stabled. Due to this fact o
succeeds in keeping up the mean value of the field on
higher level in the central region where the instability dev
ops.

Decreasing ofu0 in Eq. ~7! leads to reducing of the num
ber of hyperbolas in which vicinity the field is localized an
at u0<3 ‘‘hyperbolicity’’ of the initial distribution ceases
manifesting itself. The evolution of such a distribution (u0
<3) proceeds as in Ref.@6#.

Perturbations of a wave field localized near the charac
istics of a hyperbolic operator of the original equation Eq.~1!
can be excited for initial distributions without ‘‘hyperbolic
ity,’’ but in this case the process becomes slower. For
ample, in the case of a Gauss-shaped initial distribution,
longitudinal splitting is developed, first which results in th
formation of two rather strong field maximums moving
the opposite directions along thez axis. As for the param-
eters corresponding to the considered distribution Eq.~7! the
movement of the intensive localized field regions causes
excitation of shockwaves. The secondary splitting is dev
oped along the front of these shockwaves so as near
hyperbolas~see Fig. 1!.

We have considered a scenario for the dynamics of e
tation of wave fields in the system described by the nonlin
Schrödinger equation Eq.~1! with the hyperbolic spatial op-
erator. Three stages are characteristic for them: self-focu
filamentation, compression, and splitting of the filaments
homogeneities in the defocusing direction.

The process of the wave field splitting in the longitudin
direction is accompanied by a strong spectrum broaden
The evolution of a wave field of the considered form~see
Fig. 2! must be visible on a liquid surface.

It is readily seen that analytical results are easily gene
ized for the three-dimensional case. In this case the s
similar variable isz5r 22z2. This gives grounds to be sur
that the results obtained will not change in the 3D geome
By that, one can expect that, especially in the self-sim
regime of collapse to ’’hyperboloids,’’ the rate of splittin
instability evolution will be noticeably higher and the ge
eration of such sharp inhomogeneities makes it necessa
go beyond the framework of the ‘‘quadratic dispersion’’ a
proximation. The account of higher derivatives overz, evi-
dently, playing the stabilizing role, requires additional stu
~see, for example, Ref.@14#!. Thus, a hyperbolic character o
the spatial operator in the nonlinear Schro¨dinger equation
leads to the noticeable variety of the specific regimes
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wave field self-action. In this paper we referred mainly
nonlinear optics of short laser pulses but the same picture
to occur in other fields described by Eq.~1!, especially for
the wave packets on the liquid surface@3#.
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